Seznam snímků a relevantní popis série popisu principu MR zobrazování včetně vztahu k jednotlivým videosekvencím

Obrázky a videa byly převzaty z anglického originálu Plewes, D.B.: The Animated Physics of MRI.

The spin echo 21

video 22 part 1 - The behavior of spin dephasing and RF pulses during the sequence

22 part 2 - NMR signal for different echo times TE

22 part 3 - Detailed view of the transverse magnetization components alone

23 The spin echo - T2 summary (MNR signal vs. the time TE)

24 Typical T2 values in the head (sample T2 relaxation times)

25 T2 modulation of image contrast

26 Spin-lattice (T1) relaxation

27 Spin-lattice (T1) relaxation - animation video 13

28 Spin-lattice relaxation values for various tissues (sample T1 relaxation times)

29 T1 modulation on image contrast

30 Summary of T1 and T2 relaxation (relaxation effects)

31 Overview of lecture on the physics of image formation (MR imaging)

- Image structure
- Fourier representation
- Magnetic field gradients
- Moving through K-space
- Collecting K-space data
- MRI sequence summary

32 Structure of MR images

33 The question of localization (How do we localize the signal?)

34 The spatial location task

35 Techniques for spatial localization

36 Selective excitation: The ingredients

37 Selective excitations: An analogy - resonance

38 Selective excitations and NMR resonance

39 A uniform magnetic field (magnetic field gradients)

40 A magnetic field gradient (Gz - in Z direction)

41 Selective excitation and a Gx gradient

42 The effect of RF pulses in selective excitation

43 In plane localization

44 The relation between the MR system and image formation

45 Image space vs. K-space

46 A one dimensional problem (Fourier transform)

47 A crude Fourier approximation

48 A better Fourier approximation

49 The definition of K-space

50 Successively better approximation

51 Successively better approximation

52 Two dimensional K-space and image space (space and image domains)

53 The meaning of various points on K-space (Fourier transform representation)

54 The question of How stripes are made in MRI ? (MR image formation)

55 Return to the relation of the MR system and image formation

56 Gradient in X (gradient X direction)

57 Gradient in Y (gradient Y direction)

58 An alternative representation for magnetization video 14

59 The effect of a gradient on an array of magnetization balls

- 60 The effect of a gradient on an array of magnetization balls (animation) video 15
- 61 Creating vertical stripes video 16
- 62 Creating horizontal stripes video 17
- 63 Creating blique stripes and K-space video18

64 Oblique stripes: A summary

65 How does the MRI system measure the K-space signals? video 19

66 A simple (but incomplete) MRI pulse sequence

67 The four quadrants of K-space (symmetric 2D K-space)

68 A more complete MRI pulse sequence

69 Fourier reconstruction of K-space: part A video 20

70 Fourier reconstruction of K-space: part B video 21

71 Conclusion I (MR image formation)

- Spatial location by application of three orthogonal gradients
- Selection excitation defines slice location and width
- In-plane locations done by:
 Frequency Encoding
 Phase Encoding

72 Conclusion II (MR image formation)

Frequency Encoding

- Measures location in one direction
- MR signal measured with gradient on
- MR signal vs time measures the K-space data

73 Conclusion III (MR image formation)

- Phase-encoding defines Y position
- Incremented phase-encoding gradient generates Ky data
- Combined phase/frequency encoding defines all K-space data
- Requires many RF/gradient pulses to fill all K-space